

Date Planned ://	Daily Tutorial Sheet-12	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

141. Study the following table.

(

				_
Buffer Solution	I	II	III	IV
Volume (in mL) of 1 M weak acid	4.0	4.0	40.0	0.1
Volume (in mL) of 0.1 M sodium salt of	4.0	40.0	4.0	10.0
weak acid				

Which of the two sets of buffer solution have least pH?

(A) I and II

5

(B) I and III

9

- (C) II and III
- (D) II and IV
- 142. If the equilibrium constant of the reaction of weak acid HA with strong base NaOH is 10^9 , then pH of 0.1 M NaA is:
 - (A)
- (B)
- **(C)** 7
- **(D)** 8
- **(**

143. In aqueous solution, the ionization constant for carbonic acid are :

$$K_1 = 4.2 \times 10^{-7}$$
 and $K_2 = 4.8 \times 10^{-11}$

Select the correct statement for a saturated 0.034 M solution of the carbonic acid:

- (A) The concentrations of H^+ and HCO_3^- are approximately equal
- **(B)** The concentration of H^+ is double than that of CO_3^{2-}
- (C) Concentration of CO_3^{2-} is 0.034 M
- (D) The concentration of CO_3^{2-} is greater than that of HCO_3^-
- **144.** Auto-ionisation of liquid NH₃ is:

$$2NH_3 \longrightarrow NH_4^+ + NH_2^-$$

with
$$K_{NH_3} = [NH_4^+][NH_2^-] = 10^{-30}$$
 at -50° C

Number of amide ions (NH₂), present per mm³ of pure liquid NH₃ is:

- **(A)** 60
- **(B)** 301
- **(C)** 200
- **(D)** 100
- **145.** A mixture of weak acid is 0.1 M in HCOOH ($K_a = 1.8 \times 10^{-4}$) and 0.1 M in HOCN ($K_a = 3.1 \times 10^{-4}$). Hence,

[H₃O⁺] is approximately:

- **(A)** 10^{-2}M
- (B)
- $4.1 \times 10^{-4} \,\mathrm{M}$
- (C) $5 \times 10^{-4} \,\mathrm{M}$
- **(D)** $4.1 \times 10^{-3} \text{ M}$

*146. In H_3PO_4 , which of the following is true?

- $\textbf{(A)} \hspace{1cm} \textbf{K}_{a} = \textbf{K}_{a_{1}} \times \textbf{K}_{a_{2}} \times \textbf{K}_{a_{3}}$
- $\textbf{(B)} \hspace{1cm} {\rm K}_{a_1} < {\rm K}_{a_2} < {\rm K}_{a_3}$

(C) $K_{a_1} > K_{a_2} > K_{a_3}$

(D) $K_{a_1} = K_{a_2} = K_{a_3}$